Send to:

Choose Destination
See comment in PubMed Commons below
EMBO J. 2000 Apr 3;19(7):1731-42.

DNA polymerase mu (Pol mu), homologous to TdT, could act as a DNA mutator in eukaryotic cells.

Author information

  • 1Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Centro Nacional de Biotecnología (CSIC), Universidad Autónoma, 28049 Madrid, Spain.


A novel DNA polymerase has been identified in human cells. Human DNA polymerase mu (Pol mu), consisting of 494 amino acids, has 41% identity to terminal deoxynucleotidyltransferase (TdT). Human Pol mu, overproduced in Escherichia coli in a soluble form and purified to homogeneity, displays intrinsic terminal deoxynucleotidyltransferase activity and a strong preference for activating Mn(2+) ions. Interestingly, unlike TdT, the catalytic efficiency of polymerization carried out by Pol mu was enhanced by the presence of a template strand. Using activating Mg(2+) ions, template-enhanced polymerization was also template-directed, leading to the preferred insertion of complementary nucleotides, although with low discrimination values. In the presence of Mn(2+) ions, template-enhanced polymerization produced a random insertion of nucleotides. Northern-blotting and in situ analysis showed a preferential expression of Pol mu mRNA in peripheral lymphoid tissues. Moreover, a large proportion of the human expressed sequence tags corresponding to Pol mu, present in the databases, derived from germinal center B cells. Therefore, Pol mu is a good candidate to be the mutator polymerase responsible for somatic hyper- mutation of immunoglobulin genes.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk