Format

Send to:

Choose Destination
See comment in PubMed Commons below
Exp Cell Res. 2000 Apr 10;256(1):158-67.

The Ser252Trp fibroblast growth factor receptor-2 (FGFR-2) mutation induces PKC-independent downregulation of FGFR-2 associated with premature calvaria osteoblast differentiation.

Author information

  • 1Unit 349 INSERM Affiliated to CNRS, Lariboisière Hospital, Paris, France.

Abstract

We recently showed that the Apert Ser252Trp fibroblast growth factor receptor-2 (FGFR-2) mutation causes premature osteoblast differentiation and increased subperiosteal calvaria bone matrix formation. To gain further insight into the cellular mechanisms involved in these effects, we examined the effects of the mutation on the expression of FGFRs in relation to cell proliferation and differentiation markers in vivo and in vitro, and we analyzed the underlying signaling pathways in mutant cells. Immunohistochemical analysis of the Apert calvaria suture showed that the Ser252Trp FGFR-2 mutation increased type 1 collagen, osteocalcin, and osteopontin expression in preosteoblasts compared to normal, whereas cell growth was not affected. The premature osteoblast differentiation induced by the mutation was associated with lower than normal FGFR-2 immunolabeling, whereas FGFR-1 and FGFR-3 levels were not decreased. Immunocytochemical analysis in osteoblasts isolated from Apert coronal suture showed that the Ser252Trp mutation induced constitutive downregulation of FGFR-2 in mutant cells. Western blot analysis of FGFRs in immortalized mutant osteoblastic cells confirmed that the mutation induced FGFR-2 downregulation. FGFR-2 mRNA levels were not altered in mutant cells, indicating that FGFR-2 downregulation resulted from receptor internalization rather than from changes in receptor mRNA. The signaling pathway involved in FGFR-2 downregulation was studied using specific inhibitors of FGF signaling molecules. The selective PKC inhibitor calphostin C markedly reduced FGFR-2 protein levels in mutant cells, in contrast to the p38 MAP kinase inhibitor SB 203580 or the Erk 1,2 MAP kinase inhibitor PD-98059, showing that PKC is involved in FGFR-2 regulation, but not in FGFR-2 downregulation in mutant cells. The results indicate that the premature osteoblast differentiation induced by the FGFR-2 Ser252Trp mutation is associated with a PKC-independent downregulation of FGFR-2 in human calvaria cells.

Copyright 2000 Academic Press.

PMID:
10739663
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk