Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Eur J Cell Biol. 2000 Feb;79(2):71-80.

Identification and characterization of five new subunits of TRAPP.

Author information

  • 1Howard Hughes Medical Institute and the Department of Cell Biology, Yale University School of Medicine, New Haven, CT 06519-1418, USA.

Erratum in

  • Eur J Cell Biol. 2000 Jul;79(7):520.

Abstract

TRAPP (transport protein particle), a multiprotein complex containing ten subunits, plays a key role in the late stages of endoplasmic reticulum to Golgi traffic in the yeast Saccharomyces cerevisiae. We previously described the identification of five TRAPP subunits (Bet5p, Trs20p, Bet3p, Trs23p and Trs33p). Now we report the identification of the remaining five subunits (Trs31p, Trs65p, Trs85p, Trs120p and Trs130p) as well as an initial characterization of the yeast complex and its human homologue. We find that three of the subunits are dispensable for growth and a novel sequence motif is found in Bet3p, Trs31p and Trs33p. Furthermore, biochemical characterization of both yeast and human TRAPP suggests that this complex is anchored to a Triton X-100 resistant fraction of the Golgi. Differences between yeast and human TRAPP as well as the relationship of TRAPP subunits to other docking/tethering factors are discussed.

PMID:
10727015
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk