Format

Send to:

Choose Destination
See comment in PubMed Commons below
Virology. 2000 Mar 30;269(1):54-65.

Plasmid DNA encoding the respiratory syncytial virus G protein is a promising vaccine candidate.

Author information

  • 1Research Center, Pasteur Mérieux Connaught Canada, 1755 Steeles Avenue West, North York, Ontario, M2R 3T4, Canada.

Abstract

Respiratory syncytial virus (RSV) remains a major cause of severe respiratory diseases in infants, young children, and the elderly. However, development of a RSV vaccine has been hampered by the outcome of the infant trials in the 1960s with a formalin-inactivated RSV preparation. Enhanced lung disease was induced by the vaccination post-RSV exposure. Previous studies in mice primed with RSV G protein either formulated in adjuvants or delivered by recombinant vaccinia viruses have indicated that enhanced lung pathology resulted from a Th2-type host immune response against the viral G protein. However, in the present report, we have demonstrated that vaccination with plasmid vectors encoding either a full-length or a secreted G protein (DNA-G) clearly elicited balanced systemic and pulmonary Th1/Th2 cytokine responses in mice and did not induce an atypical pulmonary inflammatory reaction post-RSV challenge in cotton rats. DNA-G immunization also induced marked virus neutralizing antibody responses and protection against RSV infection of the lower respiratory tract of both mice and cotton rats. So far, only genetic immunization has been able to induce a balanced Th1/Th2 response with the RSV G protein, reminiscent of that induced by live RSV. Therefore, DNA-G is a promising immunogen for inclusion in a nucleic acid RSV vaccine.

Copyright 2000 Academic Press.

PMID:
10725198
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk