Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Adv Exp Med Biol. 1999;467:517-24.

IFN-gamma activated indoleamine 2,3-dioxygenase activity in human cells is an antiparasitic and an antibacterial effector mechanism.

Author information

  • 1Institute for Medical Microbiology and Virology, Heinrich-Heine Universität Düsseldorf. daeubene@uni-duesseldorf.de

Abstract

In nearly all human cells IFN-gamma stimulation leads to an activation of indoleamine 2,3-dioxygenase (IDO) activity, which is responsible for anti-toxoplasma and anti-chlamydia effects. We have recently shown that IDO activation is also a defense mechanism against extracellular beta-hemolytic streptococci groups A, B, C and G in human glioblastoma cells, fibroblasts and macrophages. Similar effects were also seen with enterococci and in approximately 65% of staphylococci tested, including multiresistant strains of both species. In addition, we have found that IDO activity is differentially regulated in different cells. For example we have found that TNF-alpha enhances IFN-gamma induced IDO activity and antimicrobial effect in human glioblastoma cells whereas both IFN-gamma mediated effects were blocked by TNF-alpha as well as by IL-1 in a human uroepithelial cell line. We were able to show that the IL-1 and TNF-alpha mediated inhibition of IFN-gamma-induced IDO activity in uroepithelial cells is due to stimulation of inducible nitric oxide synthase. In human astrocytoma cells, IL-1 and TNF-alpha did not inhibit IDO activity and in concordance with this finding these cells did not show a detectable nitric oxide production.

PMID:
10721095
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk