Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Bacteriol. 2000 Apr;182(7):1883-8.

The Bacillus subtilis yabG gene is transcribed by SigK RNA polymerase during sporulation, and yabG mutant spores have altered coat protein composition.

Author information

  • 1Faculty of Pharmaceutical Sciences, Setsunan University, Osaka, Japan.

Abstract

The expression of six novel genes located in the region from abrB to spoVC of the Bacillus subtilis chromosome was analyzed, and one of the genes, yabG, had a predicted promoter sequence conserved among SigK-dependent genes. Northern blot analysis revealed that yabG mRNA was first detected from 4 h after the cessation of logarithmic growth (T(4)) in wild-type cells and in a gerE36 (GerE(-)) mutant but not in spoIIAC (SigF(-)), spoIIGAB (SigE(-)), spoIIIG (SigG(-)), and spoIVCB (SigK(-)) mutants. The transcription start point was determined by primer extension analysis; the -10 and -35 regions are very similar to the consensus sequences recognized by SigK-containing RNA polymerase. Inactivation of the yabG gene by insertion of an erythromycin resistance gene did not affect vegetative growth or spore resistance to heat, chloroform, and lysozyme. The germination of yabG spores in L-alanine and in a mixture of L-asparagine, D-glucose, D-fructose, and potassium chloride was also the same as that of wild-type spores. On the other hand, the protein preparation from yabG spores included 15-, 18-, 21-, 23-, 31-, 45-, and 55-kDa polypeptides which were low in or not extracted from wild-type spores under the same conditions. We determined their N-terminal amino acid sequence and found that these polypeptides were CotT, YeeK, YxeE, CotF, YrbA (31 and 45 kDa), and SpoIVA, respectively. The fluorescence of YabG-green fluorescent protein fusion produced in sporulating cells was detectable in the forespores but not in the mother cell compartment under fluorescence microscopy. These results indicate that yabG encodes a sporulation-specific protein which is involved in coat protein composition in B. subtilis.

PMID:
10714992
[PubMed - indexed for MEDLINE]
PMCID:
PMC101870
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk