Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Proc Natl Acad Sci U S A. 2000 Mar 14;97(6):2603-8.

Pleiotrophin signals increased tyrosine phosphorylation of beta beta-catenin through inactivation of the intrinsic catalytic activity of the receptor-type protein tyrosine phosphatase beta/zeta.

Author information

  • 1Division of Growth Regulation, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.

Abstract

Pleiotrophin (PTN) is a platelet-derived growth factor-inducible, 18-kDa heparin-binding cytokine that signals diverse phenotypes in normal and deregulated cellular growth and differentiation. To seek the mechanisms of PTN signaling, we studied the interactions of PTN with the receptor protein tyrosine phosphatase (RPTP) beta/zeta in U373-MG cells. Our results suggest that PTN is a natural ligand for RPTP beta/zeta. PTN signals through "ligand-dependent receptor inactivation" of RPTP beta/zeta and disrupts its normal roles in the regulation of steady-state tyrosine phosphorylation of downstream signaling molecules. We have found that PTN binds to and functionally inactivates the catalytic activity of RPTP beta/zeta. We also have found that an active site-containing domain of RPTP beta/zeta both binds beta-catenin and functionally reduces its levels of tyrosine phosphorylation when added to lysates of pervanidate-treated cells. In contrast, an (inactivating) active-site mutant of RPTP beta/zeta also binds beta-catenin but fails to reduce tyrosine phosphorylation of beta-catenin. Finally, in parallel to its ability to inactivate endogenous RPTP beta/zeta, PTN sharply increases tyrosine phosphorylation of beta-catenin in PTN-treated cells. The results suggest that in unstimulated cells, RPTP beta/zeta is intrinsically active and functions as an important regulator in the reciprocal control of the steady-state tyrosine phosphorylation levels of beta-catenin by tyrosine kinases and phosphatases. The results also suggest that RPTP beta/zeta is a functional receptor for PTN; PTN signals through ligand-dependent receptor inactivation of RPTP beta/zeta to increase levels of tyrosine phosphorylation of beta-catenin to initiate downstream signaling. PTN is the first natural ligand identified for any of the RPTP family; its identification provides a unique tool to pursue the novel signaling pathway activated by PTN and the relationship of PTN signaling with other pathways regulating beta-catenin.

PMID:
10706604
[PubMed - indexed for MEDLINE]
PMCID:
PMC15975
Free PMC Article

Images from this publication.See all images (4)Free text

Figure 1
Figure 2
Figure 3
Figure 4
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk