Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Cell Sci. 2000 Apr;113 ( Pt 7):1177-88.

Rho and Rac exert antagonistic functions on spreading of macrophage-derived multinucleated cells and are not required for actin fiber formation.

Author information

  • 1Laboratoire de Biologie Moléculaire et Cellulaire, Ecole Normale Supérieure de Lyon, CNRS/ENS Equipe INRA n degrees 913. 46, allée d'Italie, France.

Abstract

Multinucleated giant cells (MNGC) derived from avian blood monocytes present, like osteoclasts, an unusual cytoskeletal organization characterized by (1) cortical rings of actin filaments, (2) unique adhesion structures called podosomes and (3) vinculin containing focal complexes which are not visibly connected to F-actin structures. The Rho family of small GTPases plays an essential role in the regulation and organization of cellular cytoskeletal structures including F-actin and vinculin associated structures. Using bacterial toxins such as modified exoenzyme C3 (C3B) and toxin B or overexpression of constitutively active Rac and Rho proteins fused to the green fluorescent protein (GFP), we show that Rac and Rho play antagonistic roles in regulating the morphology of osteoclast-like cells. Inhibition of Rho by C3B triggered MNGC spreading whereas activated Rho promoted cell retraction. However, inhibition or activation of Rho led to complete disorganization of fibrillar actin structures, including podosomes. Toxin B inhibition of Rho, Rac and Cdc42 induced a time dependent F-actin and vinculin reorganization. Initially, actin fibers with associated adhesion plaques formed and disappeared subsequently. Finally, only small focal complexes remained at the MNGC periphery before retracting. At the time when actin fibers formed, we observed that Rac was already inhibited by toxin B. By combining C3B treatment and overexpression of a dominant negative form of Rac (N17Rac), we show that the formation of these focal adhesion and actin fiber structures required neither Rho nor Rac activity. Moreover, our results show that podosomes are extremely unstable structures since any modifications of Rho or Rac activity resulted in their dissociation.

PMID:
10704369
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire
    Loading ...
    Write to the Help Desk