Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Toxicol Appl Pharmacol. 2000 Mar 15;163(3):279-85.

Pharmacokinetics of inhaled manganese phosphate in male Sprague-Dawley rats following subacute (14-day) exposure.

Author information

  • 1Chemical Industry Institute of Toxicology, 6 Davis Drive, Research Triangle Park, North Carolina, 27709-2137, USA.

Abstract

Methylcyclopentadienyl manganese tricarbonyl (MMT) is used as a gasoline octane enhancer. Manganese phosphate is the primary respirable (PM(2.5)) MMT-combustion product emitted from the automobile tailpipe. The goal of this study was to determine the exposure-response relationship for inhaled manganese phosphate in adult male CD rats. Rats were exposed 6-h/day for either 5 days/week (10 exposures) or 7 days/week (14 exposures) to manganese phosphate at 0, 0.03, 0.3, or 3 mg Mn/m(3) (MMAD congruent with 1.5 micrometer). The following tissues collected at the end of the 2-week exposure: plasma, erythrocytes, olfactory bulb, striatum, cerebellum, lung, liver, femur, and skeletal muscle (n = 6 rats/exposure group) were analyzed for manganese content by neutron activation analysis. Intravenous (54)MnCl(2) tracer studies were also conducted following the 14th exposure (n = 6 rats/concentration), and whole-body gamma spectrometry was performed immediately after injection and at 1, 2, 4, 8, 12, and 16 weeks after (54)MnCl(2) administration. Increased manganese concentrations were observed in olfactory bulb, lung, femur, and skeletal muscle following exposure to 3 mg Mn/m(3) (10 or 14 exposures). Increased manganese concentrations were also observed in olfactory bulb, striatum, and lung following exposure to 0.3 mg Mn/m(3) (14 exposures only). Red blood cell and plasma manganese concentrations were increased only in rats exposed to 3 mg Mn/m(3) (10 exposures). Rats exposed to 3 mg Mn/m(3) also had an increased whole-body manganese clearance rate when compared to air-exposed control animals. Our results suggest that the rat olfactory bulb may accumulate more manganese than other brain regions following inhalation exposure.

Copyright 2000 Academic Press.

PMID:
10702367
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk