Send to

Choose Destination
See comment in PubMed Commons below
Nature. 2000 Feb 17;403(6771):743-6.

Preparing pure photon number states of the radiation field

Author information

  • 1Max Planck Institute for Quantum Optics, Garching, Germany.


The quantum mechanical description of a radiation field is based on states that are characterized by the number of photons in a particular mode; the most basic quantum states are those with fixed photon number, usually referred to as number (or Fock) states. Although Fock states of vibrational motion can be observed readily in ion traps, number states of the radiation field are very fragile and difficult to produce and maintain. Single photons in multi-mode fields have been generated using the technique of photon pairs. But in order to generate these states in a cavity, the mode in question must have minimal losses; moreover, additional sources of photon number fluctuations, such as the thermal field, must be eliminated. Here we observe the build-up of number states in a high-Q cavity, by investigating the interaction dynamics of a probe atom with the field. We employ a dynamical method of number state preparation that involves state reduction of highly excited atoms in a cavity, with a photon lifetime as high as 0.2 seconds. (This set-up is usually known as the one-atom maser or 'micromaser'.) Pure states containing up to two photons are measured unambiguously.

[PubMed - as supplied by publisher]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Write to the Help Desk