Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2000 Mar 3;275(9):6490-8.

The role of the conserved box E residues in the active site of the Escherichia coli type I signal peptidase.

Author information

  • 1Department of Chemistry, The Ohio State University, Columbus, Ohio 43210, USA.

Abstract

Type I signal peptidases are integral membrane proteins that function to remove signal peptides from secreted and membrane proteins. These enzymes carry out catalysis using a serine/lysine dyad instead of the prototypical serine/histidine/aspartic acid triad found in most serine proteases. Site-directed scanning mutagenesis was used to obtain a qualitative assessment of which residues in the fifth conserved region, Box E, of the Escherichia coli signal peptidase I are critical for maintaining a functional enzyme. First, we find that there is no requirement for activity for a salt bridge between the invariant Asp-273 and the Arg-146 residues. In addition, we show that the conserved Ser-278 is required for optimal activity as well as conserved salt bridge partners Asp-280 and Arg-282. Finally, Gly-272 is essential for signal peptidase I activity, consistent with it being located within van der Waals proximity to Ser-278 and general base Lys-145 side-chain atoms. We propose that replacement of the hydrogen side chain of Gly-272 with a methyl group results in steric crowding, perturbation of the active site conformation, and specifically, disruption of the Ser-90/Lys-145 hydrogen bond. A refined model is proposed for the catalytic dyad mechanism of signal peptidase I in which the general base Lys-145 is positioned by Ser-278, which in turn is held in place by Asp-280.

PMID:
10692453
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk