Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Pflugers Arch. 2000 Feb;439(4):455-62.

Lithium activates mammalian Na+/H+ exchangers: isoform specificity and inhibition by genistein.

Author information

  • 1Department of Molecular Physiology, National Cardiovascular Center Research Institute, Suita, Osaka, Japan.


Replacement of external NaCl with LiCl induced cytoplasmic alkalinization in CCL-39 cells and rat L6 myoblasts expressing the endogenous Na+/H+ exchanger isoform NHE1. This Li+-induced alkalinization is due to activation of the Na+/H+ exchanger because it was completely inhibited by 100 microM ethylisopropylamiloride (apparent Kd=1 microM) and because it did not occur in exchanger-deficient PS120 cells. The effect of Li+ was not mimicked by Na+, K+, Cs+ and choline+. Li+ caused cytoplasmic alkalinization in PS120 cells expressing NHE1 or NHE2, but not NHE3, when Li+ was added to cells at a concentration high enough to saturate their external transport sites as predicted from Li+ affinities. Li+ did not induce phosphatidylinositol (PI) turnover or intracellular Ca2+ mobilization. Li+-induced alkalinization was not affected by protein kinase C down-regulation, loss of glycogen synthase kinase 3beta caused by antisense oligonucleotide treatment, or pretreatment with calphostin C, pertussis toxin, MEK inhibitor PD98059 and PI3-kinase inhibitor LY294002. However, it was markedly suppressed by the tyrosine kinase inhibitor genistein (10 microM). Thus, externally added Li+ activates NHE1 and NHE2 via a mechanism possibly involving a tyrosine kinase, causing an increase in cytoplasmic pH that could potentially affect various cell functions.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Icon for Springer
    Loading ...
    Write to the Help Desk