Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Circ Res. 2000 Feb 4;86(2):185-90.

Laminar shear stress inhibits vascular endothelial cell proliferation by inducing cyclin-dependent kinase inhibitor p21(Sdi1/Cip1/Waf1)

Author information

  • 1Department of Pathology, School of Medicine, Yamanashi Medical University, Nakakoma, Yamanashi, Japan.

Abstract

Alterations in the functions of vascular endothelial cells (ECs) induced by fluid shear stress may play a pivotal role in both the development and prevention of vascular diseases. We found that DNA synthesis of bovine aortic and human umbilical vein ECs, determined by [(3)H]thymidine incorporation, was inhibited by steady laminar shear stress (5 and 30 dyne/cm(2)). This growth inhibition due to shear stress was associated with suppression of cell transition from the G(1) to S phase of the cell cycle. Therefore, we studied G(1)-phase events to find the molecules responsible for this cell cycle arrest. Shear stress inhibited the phosphorylation of a retinoblastoma protein (pRb) and the activity of cyclin-dependent kinase (cdk) 2 and cdk4, which phosphorylate pRb. The level of cdk inhibitor p21(Sdi1/Cip1/Waf1) protein, but not that of p27(Kip1), increased as a result of shear stress, and the amount of p21 protein associated with cdk2 also increased, although the protein level of cdk2 was unchanged. Shear stress markedly elevated the mRNA level of p21, and this elevation in mRNA faded after the release of cells from shear stress, concomitant with a recovery of DNA synthesis. These results suggest that steady laminar shear stress induces cell cycle arrest by upregulating p21. Derangement of the steady laminar flow may release cells from this inhibition and induce cell proliferation, which, in turn, may cause atherosclerosis through the induction of EC stability disruption.

Comment in

PMID:
10666414
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire
    Loading ...
    Write to the Help Desk