Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Cancer Res. 2000 Jan 1;60(1):129-33.

Hypermethylation-associated inactivation of p14(ARF) is independent of p16(INK4a) methylation and p53 mutational status.

Author information

  • 1The Johns Hopkins Oncology Center, Baltimore, Maryland 21231, USA.

Abstract

The INK4a/ARF locus encodes two cell cycle-regulatory proteins, p16INK4a andp14ARF, which share an exon using different reading frames. p14ARF antagonizes MDM2-dependent p53 degradation. However, no point mutations in p14ARF not altering p16INK4a have been described in primary tumors. We report that p14ARF is epigenetically inactivated in several colorectal cell lines, and its expression is restored by treatment with demethylating agents. In primary colorectal carcinomas, p14ARF promoter hypermethylation was found in 31 of 110 (28%) of the tumors and observed in 13 of 41 (32%) colorectal adenomas but was not present in any normal tissues. p14ARF methylation appears in the context of an adjacent unmethylated p16INK4a promoter in 16 of 31 (52%) of the carcinomas methylated at p14ARF. Although p14ARF hypermethylation was slightly overrepresented in tumors with wild-type p53 compared to tumors harboring p53 mutations [19 of 55 (34%) versus 12 of 55 (22%)], this difference did not reach statistical significance. p14ARF aberrant methylation was not related to the presence of K-ras mutations. Our results demonstrate that p14ARF promoter hypermethylation is frequent in colorectal cancer and occurs independently of the p16INK4a methylation status and only marginally in relation to the p53 mutational status.

PMID:
10646864
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk