Display Settings:

Format

Send to:

Choose Destination
Blood. 2000 Jan 15;95(2):633-8.

Transforming activity of receptor tyrosine kinase tyro3 is mediated, at least in part, by the PI3 kinase-signaling pathway.

Author information

  • 1Departments of Internal Medicine and Cell Biology, Neurobiology, and Anatomy, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.

Abstract

Protein tyrosine phosphorylation is an integral part of cytokine-induced proliferation and differentiation of hematopoietic cells. The authors previously reported cloning and characterization of the receptor tyrosine kinase Tif, also termed Tyro3. Using the yeast 2-hybrid technology, they recently identified that the p85 subunit of phosphatidylinositol 3-kinase (PI3 kinase) interacted with the cytoplasmic domain of Tyro3. On treatment with epidermal growth factor (EGF), NIH3T3 cells expressed EGFR/Tyro3 (a fusion receptor with the extracellular domain from epidermal growth factor receptor and the transmembrane and cytoplasmic domains from Tyro3), and EGFR/Tyro3 was rapidly phosphorylated on tyrosine residues. The interaction between Tyro3 and p85 was also confirmed by glutathione S-transferase (GST) pull-down experiments. Co-immunoprecipitation followed by Western blot analysis revealed that PI3 kinase was associated with and phosphorylated by the activated Tyro3. Tyro3-associated PI3 kinase exhibited an enhanced kinase activity. In addition, EGF treatment of EGFR/Tyro3-expressing cells led to enhanced phosphorylation of Akt, a downstream component of PI3 kinase. Treatment of NIH3T3 cells expressing a full length of rat Tyro-3, but not NIH3T3 cells, with protein S also resulted in phosphorylation of Akt. Soft agar colony assays showed that the addition of EGF to EGFR/Tyro3-transfected cells, but not to the parental NIH3T3 cells, resulted in a concentration-dependent increase in the formation of anchorage-independent colonies. Tyro3-mediated transformation of NIH3T3 cells was significantly blocked by wortmannin, a PI3 kinase-specific inhibitor. Results of these combined studies strongly suggested that the oncogenic transforming ability of Tyro3 was mediated at least in part by the PI3 kinase pathway. (Blood. 2000;95:633-638)

PMID:
10627473
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk