Format

Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 2000 Jan 7;275(1):279-87.

Requirement for a kinase-specific chaperone pathway in the production of a Cdk9/cyclin T1 heterodimer responsible for P-TEFb-mediated tat stimulation of HIV-1 transcription.

Author information

  • 1Department of Molecular Biology, University of California at Berkeley, Berkeley, California 94720-3206, USA.

Abstract

Tat activation of HIV-1 transcription is mediated by human transcription elongation factor P-TEFb, which interacts with Tat and phosphorylates the C-terminal domain of RNA polymerase II. The catalytic subunit of the P-TEFb complex, Cdk9, has been shown to interact with cyclin T and several other proteins of unknown identity. Consequently, the exact subunit composition of active P-TEFb has not been determined. Here we report the affinity purification and identification of the Cdk9-associated proteins. In addition to forming a heterodimer with cyclin T1, Cdk9 interacted with the molecular chaperone Hsp70 or a kinase-specific chaperone complex, Hsp90/Cdc37, to form two separate chaperone-Cdk9 complexes. Although the Cdk9/cyclin T1 dimer was exceptionally stable and produced slowly in the cell, free and unprotected Cdk9 appeared to be degraded rapidly. Several lines of evidence indicate the heterodimer of Cdk9/cyclin T1 to be the mature, active form of P-TEFb responsible for phosphorylation of the C-terminal domain of RNA polymerase II interaction with the Tat activation domain, and mediation of Tat activation of HIV-1 transcription. Pharmacological inactivation of Hsp90/Cdc37 function by geldanamycin revealed an essential role for the chaperone-Cdk9 complexes in generation of Cdk9/cyclin T1. Our data suggest a previously unrecognized chaperone-dependent pathway involving the sequential actions of Hsp70 and Hsp90/Cdc37 in the stabilization/folding of Cdk9 as well as the assembly of an active Cdk9/cyclin T1 complex responsible for P-TEFb-mediated Tat transactivation.

PMID:
10617616
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk