Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Hum Mol Genet. 2000 Jan 22;9(2):259-65.

An exonic enhancer is required for inclusion of an essential exon in the SMA-determining gene SMN.

Author information

  • 1Department of Dermatology, New England Medical Center and Tufts University School of Medicine, Boston, MA 02111, USA.

Abstract

The survival motor neuron genes, SMN1 and SMN2, encode identical proteins; however, only homo- zygous loss of SMN1 correlates with the development of spinal muscular atrophy (SMA). We have previously shown that a single non-polymorphic nucleotide difference in SMN exon 7 dramatically affects SMN mRNA processing. SMN1 primarily produces a full-length RNA whereas SMN2 expresses dramatically reduced full-length RNA and abundant levels of an aberrantly spliced transcript lacking exon 7. The importance of proper exon 7 processing has been underscored by the identification of several mutations within splice sites adjacent to exon 7. Here we show that an AG-rich exonic splice enhancer (ESE) in the center of SMN exon 7 is required for inclusion of exon 7. This region functioned as an ESE in a heterologous context, supporting efficient in vitro splicing of the Drosophila double-sex gene. Finally, the protein encoded by the exon-skipping event, Delta7, was less stable than full-length SMN, providing additional evidence of why SMN2 fails to compensate for the loss of SMN1 and leads to the development of SMA.

PMID:
10607836
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire
    Loading ...
    Write to the Help Desk