Send to:

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 1999 Dec 24;274(52):37035-40.

The action of N-terminal acetyltransferases on yeast ribosomal proteins.

Author information

  • 1Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA.


Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry was used to determine the state of N-terminal acetylation of 68 ribosomal proteins from a normal strain of Saccharomyces cerevisiae and from the ard1-Delta, nat3-Delta, and mak3-Delta mutants (), each lacking a catalytic subunit of three different N-terminal acetyltransferases. A total 30 of the of 68 ribosomal proteins were N-terminal-acetylated, and 24 of these (80%) were NatA substrates, unacetylated in solely the ard1-Delta mutant and having mainly Ac-Ser- termini and a few with Ac-Ala- or Ac-Thr- termini. Only 4 (13%) were NatB substrates, unacetylated in solely the nat3-Delta mutant, and having Ac-Met-Asp- or Ac-Met-Glu- termini. No NatC substrates were uncovered, e.g. unacetylated in solely mak3-Delta mutants, consistent with finding that none of the ribosomal proteins had Ac-Met-Ile-, Ac-Met-Leu-, or Ac-Met-Phe- termini. Interestingly, two new types of the unusual NatD substrates were uncovered, having either Ac-Ser-Asp-Phe- or Ac-Ser-Asp-Ala- termini that were unacetylated in the ard1-Delta mutant, and only partially acetylated in the mak3-Delta mutant and, for one case, also only partially in the nat3-Delta mutant. We suggest that the acetylation of NatD substrates requires not only Ard1p and Nat1p, but also auxiliary factors that are acetylated by the Mak3p and Nat3p N-terminal acetyltransferases.

[PubMed - indexed for MEDLINE]
Free full text

LinkOut - more resources

Full Text Sources

Other Literature Sources

Molecular Biology Databases

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk