Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
Proc Natl Acad Sci U S A. 1999 Dec 7;96(25):14240-5.

Structural origins of the exonuclease resistance of a zwitterionic RNA.

Author information

  • 1Department of Molecular Pharmacology, The Drug Discovery Program, Northwestern University Medical School, Chicago, IL 60611-3008, USA.

Abstract

Nuclease resistance and RNA affinity are key criteria in the search for optimal antisense nucleic acid modifications, but the origins of the various levels of resistance to nuclease degradation conferred by chemical modification of DNA and RNA are currently not understood. The 2'-O-aminopropyl (AP)-RNA modification displays the highest nuclease resistance among all phosphodiester-based analogues and its RNA binding affinity surpasses that of phosphorothioate DNA by 1 degrees C per modified residue. We found that oligodeoxynucleotides containing AP-RNA residues at their 3' ends competitively inhibit the degradation of single-stranded DNA by the Escherichia coli Klenow fragment (KF) 3'-5' exonuclease and snake venom phosphodiesterase. To shed light on the origins of nuclease resistance brought about by the AP modification, we determined the crystal structure of an A-form DNA duplex with AP-RNA modifications at 1.6-A resolution. In addition, the crystal structures of complexes between short DNA fragments carrying AP-RNA modifications and wild-type KF were determined at resolutions between 2.2 and 3.0 A and compared with the structure of the complex between oligo(dT) and the D355A/E357A KF mutant. The structural models suggest that interference of the positively charged 2'-O-substituent with the metal ion binding site B of the exonuclease allows AP-RNA to effectively slow down degradation.

PMID:
10588690
[PubMed - indexed for MEDLINE]
PMCID:
PMC24421
Free PMC Article

Images from this publication.See all images (7)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk