Format

Send to

Choose Destination
See comment in PubMed Commons below
Mol Hum Reprod. 1999 Dec;5(12):1141-9.

Regulation of TNF-alpha mRNA expression in endometrial cells by TNF-alpha and by oestrogen withdrawal.

Author information

  • 1Department of Pathology, North Shore University Hospital, Biomedical Science Research Center, 350 Community Drive, Manhasset, NY 11030, USA.

Abstract

During each menstrual cycle, the human endometrium undergoes a series of orchestrated and well controlled changes in anticipation of the arrival of the blastocyst. In the absence of implantation, the endometrium is shed. The underlying basis of the menstrual bleeding is not clear, however, it seems to be related to steroid hormone withdrawal. We showed that tumour necrosis factor-alpha (TNF-alpha) is released by human endometrium and that endometrial epithelial cells are a major source of TNF-alpha mRNA and protein. We show here that TNF-alpha mRNA shows a specific menstrual cycle-dependent expression. The expression of TNF-alpha is mostly minimal throughout the proliferative, early and mid-secretory phases. Expression of TNF-alpha mRNA, however, is increased in the human endometrium in the late secretory phase and during endometrial bleeding. Such a menstrual cycle-dependent expression suggests that specific signals regulate the expression of TNF-alpha mRNA in the human endometrium. In vitro, the expression of TNF-alpha mRNA in endometrial epithelial cells could be regulated by exogenous TNF-alpha. This induced expression was both time- and dose-dependent. In vitro, the TNF-alpha mRNA expression was not altered by oestrogen, progesterone, or both, in the endometrial epithelial cells under conditions that maintain the steroid hormone receptors. However, in vivo, oestrogen withdrawal led to an enhanced expression of TNF-alpha in endometrial epithelial cells. These findings suggest that the up-regulation of TNF-alpha in human endometrium in the late secretory phase may be related to the falling serum oestrogen concentration at the end of the menstrual cycle as well as the potentiating effect of released TNF-alpha on its own mRNA expression.

PMID:
10587369
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk