Send to:

Choose Destination
See comment in PubMed Commons below
Genetics. 1999 Dec;153(4):1929-48.

The Mla (powdery mildew) resistance cluster is associated with three NBS-LRR gene families and suppressed recombination within a 240-kb DNA interval on chromosome 5S (1HS) of barley.

Author information

  • 1Interdepartmental Genetics Program, USDA-ARS, Iowa State University, Ames, Iowa 50011-1020, USA.

Erratum in

  • Genetics 2000 Feb;154(2):953.


Powdery mildew of barley, caused by Erysiphe graminis f. sp. hordei, is a model system for investigating the mechanism of gene-for-gene interaction between large-genome cereals and obligate-fungal pathogens. A large number of loci that confer resistance to this disease are located on the short arm of chromosome 5(1H). The Mla resistance-gene cluster is positioned near the telomeric end of this chromosome arm. AFLP-, RAPD-, and RFLP-derived markers were used to saturate the Mla region in a high-resolution recombinant population segregating for the (Mla6 + Mla14) and (Mla13 + Ml-Ru3) resistance specificities. These tightly linked genetic markers were used to identify and develop a physical contig of YAC and BAC clones spanning the Mla cluster. Three distinct NBS-LRR resistance-gene homologue (RGH) families were revealed via computational analysis of low-pass and BAC-end sequence data derived from Mla-spanning clones. Genetic and physical mapping delimited the Mla-associated, NBS-LRR gene families to a 240-kb interval. Recombination within the RGH families was at least 10-fold less frequent than between markers directly adjacent to the Mla cluster.

[PubMed - indexed for MEDLINE]
Free PMC Article
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk