Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Endocrinology. 1999 Dec;140(12):5669-81.

Sterol regulatory element-binding protein-1a binds to cis elements in the promoter of the rat high density lipoprotein receptor SR-BI gene.

Author information

  • 1Department of Obstetrics and Gynecology, University of South Florida College of Medicine, Tampa 33606, USA.

Abstract

The high density lipoprotein (HDL) receptor, or scavenger receptor class B type I (SR-BI), is critical for cholesterol transport and a potential target for hypercholesterolemic drugs. Thus, elucidation of the mechanism underlying regulation of the HDL receptor SR-BI gene is essential. It has been previously shown that there is a correlation between depletion in ovarian cholesteryl ester content and increased HDL receptor SR-BI expression in response to hormonal stimulation. We wanted to determine whether the levels of mature sterol response element-binding protein-1a (SREBP-1a), a key protein in the transcriptional regulation of several genes by sterols, are affected under these conditions. Thus, Western blot analysis was carried out. Consistent with the possibility that SREBP-1a may be involved in the regulation of the HDL receptor SR-BI gene, we found that mature SREBP-1a levels increased up to 11-fold in the ovary after treatment with 50 U hCG. This increase in mature SREBP-1a protein levels correlated with a 30% decrease in ovarian cholesterol levels. These changes in both SREBP-1a and cholesterol levels preceded a 2-fold induction of HDL receptor SR-BI protein levels. To determine whether SREBP-1a could directly regulate the expression of the rat HDL receptor SR-BI gene, approximately 2.2 kb of the receptor SR-BI promoter were cloned and sequenced, and deletion analysis and mobility shift assays were performed. The results of these studies demonstrate that the rat HDL receptor SR-BI promoter contains two sterol response elements (pSRE and dSRE) through which SREBP-1a can bind and activate transcription of this gene. These motifs are similar to known SRE motifs reported for sterol-sensitive genes, and the pSRE is located between two Sp1 sites, similar to the SRE-1 motif in the low density lipoprotein receptor. The cysteine protease inhibitor N-acetyl-leucyl-leucyl-norleucinal, which inhibits SREBP degradation, enhanced the effect of SREBP-1a on the regulation of the rat HDL receptor SR-BI gene. It has previously been shown that tropic hormones such as hCG can also influence gene expression by increasing cAMP levels. Consistent with this fact, we have recently shown that steroidogenic factor-1 (SF-1) mediates cAMP activation of the HDL receptor SR-BI gene. Thus, we decided to examine whether SREBP-1a could cooperate with SF-1 to enhance transcription this gene. The results confirm that indeed both SF-1 and SREBP-1a synergize to induce HDL receptor SR-BI gene expression.

PMID:
10579331
[PubMed - indexed for MEDLINE]

Publication Types, MeSH Terms, Substances, Grant Support

Publication Types

MeSH Terms

Substances

Grant Support

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Atypon
    Loading ...
    Write to the Help Desk