Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Development. 1999 Dec;126(24):5819-31.

Patterning of dopaminergic neurotransmitter identity among Caenorhabditis elegans ray sensory neurons by a TGFbeta family signaling pathway and a Hox gene.

Author information

  • 1Department of Molecular Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA.

Abstract

We have investigated the mechanism that patterns dopamine expression among Caenorhabditis elegans male ray sensory neurons. Dopamine is expressed by the A-type sensory neurons in three out of the nine pairs of rays. We used expression of a tyrosine hydroxylase reporter transgene as well as direct assays for dopamine to study the genetic requirements for adoption of the dopaminergic cell fate. In loss-of-function mutants affecting a TGFbeta family signaling pathway, the DBL-1 pathway, dopaminergic identity is adopted irregularly by a wider subset of the rays. Ectopic expression of the pathway ligand, DBL-1, from a heat-shock-driven transgene results in adoption of dopaminergic identity by rays 3-9; rays 1 and 2 are refractory. The rays are therefore prepatterned with respect to their competence to be induced by a DBL-1 pathway signal. Temperature-shift experiments with a temperature-sensitive type II receptor mutant, as well as heat-shock induction experiments, show that the DBL-1 pathway acts during an interval that extends from two to one cell generation before ray neurons are born and begin to differentiate. In a mutant of the AbdominalB class Hox gene egl-5, rays that normally express EGL-5 do not adopt dopaminergic fate and cannot be induced to express DA when DBL-1 is provided by a heat-shock-driven dbl-1 transgene. Therefore, egl-5 is required for making a subset of rays capable of adopting dopaminergic identity, while the function of the DBL-1 pathway signal is to pattern the realization of this capability.

PMID:
10572056
[PubMed - indexed for MEDLINE]
Free full text

LinkOut - more resources

Full Text Sources

Molecular Biology Databases

PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk