Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
J Neurosci. 1999 Nov 15;19(22):10140-52.

Cholinergic septal afferent terminals preferentially contact neuropeptide Y-containing interneurons compared to parvalbumin-containing interneurons in the rat dentate gyrus.

Author information

  • 1Department of Neuroscience and Cell Biology, University of Medicine and Dentistry, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA.


Septal cholinergic neurons may affect hippocampal memory encoding and retrieval by differentially targeting parvalbumin (PARV)-containing basket cells and neuropeptide Y (NPY) interneurons. Thus, the cellular associations of cholinergic efferents, identified by the low-affinity, p75 neurotrophin receptor (p75(NTR)), with interneurons containing either PARV or NPY in the hilus of the rat dentate gyrus were examined in single sections using dual labeling immunoelectron microscopy. Most profiles immunoreactive (IR) for PARV and NPY were perikaryal and dendritic and found within the infragranular and central hilar regions, respectively, whereas most profiles with p75(NTR)-labeling were unmyelinated axons and axon terminals. Although PARV-labeled profiles were more numerous, p75(NTR)-labeled axons and terminals contacted few PARV-IR profiles compared to NPY-labeled profiles (2% of 561 for PARV vs 12% of 433 for NPY). Moreover, structures targeted by p75(NTR)-IR axon terminals varied depending on the presence of PARV or NPY immunoreactivity. p75(NTR)-IR terminals primarily contacted PARV-IR dendrites (87%) compared to somata (13%); however, they contacted more NPY-IR somata (57%) than dendrites (43%). p75(NTR)-labeled terminals formed exclusively symmetric (inhibitory-type) synapses with PARV-IR somata and dendrites; however, they formed mostly symmetric but also asymmetric (excitatory-type) synapses with NPY-IR somata and dendrites. These results suggest that septal cholinergic efferents in the dentate gyrus: (1) preferentially innervate NPY-containing interneurons compared to PARV-containing basket cells; and (2) may provide a more powerful (i.e., somatic contacts), yet functionally diverse (i.e., asymmetric and symmetric synapses), modulation of NPY-containing interneurons. Moreover, they provide evidence that neurochemical subsets of hippocampal interneurons can be distinguished by afferent input.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Icon for HighWire
    Loading ...
    Write to the Help Desk