Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Int Rev Cytol. 2000;192:189-221.

Cytoarchitecture and physical properties of cytoplasm: volume, viscosity, diffusion, intracellular surface area.

Author information

  • Department of Physiology, University of Texas Southwestern Medical Center, Dallas 75235-9040, USA.

Abstract

Classical biochemistry is founded on several assumptions valid in dilute aqueous solutions that are often extended without question to the interior milieu of intact cells. In the first section of this chapter, we present these assumptions and briefly examine the ways in which the cell interior may depart from the conditions of an ideal solution. In the second section, we summarize experimental evidence regarding the physical properties of the cell cytoplasm and their effect on the diffusion and binding of macromolecules and vesicles. While many details remain to be worked out, it is clear that the aqueous phase of the cytoplasm is crowded rather than dilute, and that the diffusion and partitioning of macromolecules and vesicles in cytoplasm is highly restricted by steric hindrance as well as by unexpected binding interactions. Furthermore, the enzymes of several metabolic pathways are now known to be organized into structural and functional units with specific localizations in the solid phase, and as much as half the cellular protein content may also be in the solid phase.

PMID:
10553280
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk