Format

Send to

Choose Destination
See comment in PubMed Commons below
Diabetologia. 1999 Nov;42(11):1341-4.

Podocyte number predicts long-term urinary albumin excretion in Pima Indians with Type II diabetes and microalbuminuria.

Author information

  • 1Department of Medicine, VA Palo Alto Healthcare System and Stanford University School of Medicine, Stanford, California, USA.

Abstract

AIMS/HYPOTHESIS:

The predictive value of glomerular structure on progression of renal disease was examined in patients with Type II (non-insulin-dependent) diabetes and microalbuminuria (urinary albumin-to-creatinine ratio = 30-299 mg/g).

METHODS:

Kidney biopsy specimens were obtained from 16 diabetic Pima Indians (6 men, 10 women). Progression of renal disease was assessed by measuring urinary albumin excretion 4 years after the biopsy (UAE(4 years)) and by computing the change in urinary albumin excretion during the study (Delta UAE).

RESULTS:

At baseline, the duration of diabetes averaged 13.3 years (range = 4.0-23.8 years) and the mean glomerular filtration rate was 159 ml x min(-1) x 1.73 m(-2) (range = 98 - 239 ml x min(-1) x 1.73 m(-2)). Median urinary albumin excretion was 67 mg/g (range = 25-136 mg/g) and it increased to 625 mg/g (range = 9-13471 mg/g) after 4 years; 10 subjects (63 %; 4 men, 6 women) developed macroalbuminuria (urinary albumin-to-creatinine ratio >/= 300 mg/g). Neither mean arterial pressure nor HbA(1 c) changed substantially during follow-up. Among the glomerular morphologic characteristics, the number of visceral epithelial cells, or podocytes, per glomerulus was the strongest predictor of renal disease progression (UAE(4 years), r = -0.49, p = 0.05; DeltaUAE, r = -0.57, p = 0.02), with fewer cells predicting more rapid progression. Glomerular basement membrane thickness did not predict progression (UAE(4 years), r = 0.11, p = 0.67; DeltaUAE, r = 0.09, p = 0.73) and mesangial volume fraction had only a modest effect (UAE(4 years,) r = 0.42, p = 0.11; DeltaUAE, r = 0.48, p = 0.06).

CONCLUSION/INTERPRETATION:

Whether lower epithelial cell number per glomerulus among those that progressed was due to cellular destruction, a reduced complement of epithelial cells, or both is uncertain. Nevertheless, these findings suggest that podocytes play an important part in the development and progression of diabetic renal disease. [Diabetologia (1999) 42: 1341-1344]

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Springer
    Loading ...
    Write to the Help Desk