Format

Send to

Choose Destination
See comment in PubMed Commons below
J Mol Biol. 1999 Oct 22;293(2):255-70.

Themes in RNA-protein recognition.

Author information

  • 1Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA. draper@jhunix.hcf.jhu.edu

Abstract

Atomic resolution structures are now available for more than 20 complexes of proteins with specific RNAs. This review examines two main themes that appear in this set of structures. A "groove binder" class of proteins places a protein structure (alpha-helix, 310-helix, beta-ribbon, or irregular loop) in the groove of an RNA helix, recognizing both the specific sequence of bases and the shape or dimensions of the groove, which are sometimes distorted from the normal A-form. A second class of proteins uses beta-sheet surfaces to create pockets that examine single-stranded RNA bases. Some of these proteins recognize completely unstructured RNA, and in others RNA secondary structure indirectly promotes binding by constraining bases in an appropriate orientation. Thermodynamic studies have shown that binding specificity is generally a function of several factors, including base-specific hydrogen bonds, non-polar contacts, and mutual accommodation of the protein and RNA-binding surfaces. The recognition strategies and structural frameworks used by RNA binding proteins are not exotically different from those employed by DNA-binding proteins, suggesting that the two kinds of nucleic acid-binding proteins have not evolved independently.

Copyright 1999 Academic Press.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk