Send to:

Choose Destination
See comment in PubMed Commons below
Biochim Biophys Acta. 1999 Nov 16;1422(3):273-307.

Calorimetric and molecular mechanics studies of the thermotropic phase behavior of membrane phospholipids.

Author information

  • 1Department of Biochemistry, University of Virginia School of Medicine, Charlottesville, VA, USA.


In this review, we summarize the results of recent studies on the main phase transition behavior of phospholipid bilayers using the combined approaches of molecular mechanics simulations and high-resolution differential scanning calorimetry. Following a brief overview of the phase transition phenomenon exhibited by the lipid bilayer, we begin with the review by showing how several structural parameters underlying various phospholipids including phosphatidylcholine, phosphatidylethanolamine, and phosphatidylglycerol are defined and determined. Specifically, these structural parameters are obtained with saturated lipids packed in the gel-state bilayer using computer-based molecular mechanics calculations. Then we proceed to present the calorimetric data obtained with the lipid bilayer composed of saturated phospholipids as it undergoes the gel-to-liquid-crystalline phase transition in excess water. The general equations that can correlate the gel-to-liquid-crystalline phase transition temperature (T(m)) of the lipid bilayer with the structural parameters of the lipid molecule constituting the lipid bilayer are subsequently presented. From these equations, two tables of predicated T(m) values for well over 400 molecular species of saturated phosphatidylcholine and saturated phosphatidylethanolamine are generated. We further review the structure and chain-melting behavior of a large number of sn-1 saturated/sn-2 unsaturated phospholipids. Two T(m)-diagrams are shown, from which the effects of the number and the position of one to five cis carbon-carbon double bonds on T(m) can be viewed simultaneously. Finally, in the last part of this review, simple molecular models that have been invoked to interpret the characteristic T(m) trends exhibited by lipid bilayers composed of unsaturated lipids with different numbers and positions of cis carbon-carbon double bonds as seen in the T(m)-diagram are presented.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk