Format

Send to:

Choose Destination
See comment in PubMed Commons below
Mol Genet Metab. 1999 Oct;68(2):103-25.

The structural basis of phenylketonuria.

Author information

  • 1Department of Molecular Biology and Institute for Childhood and Neglected Diseases, The Scripps Research Institute, La Jolla, California, 92037, USA.

Abstract

The human phenylalanine hydroxylase gene (PAH) (locus on human chromosome 12q24.1) contains the expressed nucleotide sequence which encodes the hepatic enzyme phenylalanine hydroxylase (PheOH). The PheOH enzyme hydroxylates the essential amino acid l-phenylalanine resulting in another amino acid, tyrosine. This is the major pathway for catabolizing dietary l-phenylalanine and accounts for approximately 75% of the disposal of this amino acid. The autosomal recessive disease phenylketonuria (PKU) is the result of a deficiency of PheOH enzymatic activity due to mutations in the PAH gene. Of the mutant alleles that cause hyperphenylalaninemia or PKU 99% map to the PAH gene. The remaining 1% maps to several genes that encode enzymes involved in the biosynthesis or regeneration of the cofactor ((6R)-l-erythro-5,6,7,8-tetrahydrobiopterin) regenerating the cofactor (tetrahydrobiopterin) necessary for the hydroxylation reaction. The recently solved crystal structures of human phenylalanine hydroxylase provide a structural scaffold for explaining the effects of some of the mutations in the PAH gene and suggest future biochemical studies that may increase our understanding of the PKU mutations.

Copyright 1999 Academic Press.

PMID:
10527663
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk