Display Settings:


Send to:

Choose Destination
See comment in PubMed Commons below
Exp Cell Res. 1999 Nov 1;252(2):464-70.

Glycosylation of ceramide potentiates cellular resistance to tumor necrosis factor-alpha-induced apoptosis.

Author information

  • 1John Wayne Cancer Institute at Saint John's Health Center, Santa Monica, California, 90404, USA.


Ceramide, as a second messenger, initiates one of the major signal transduction pathways in tumor necrosis factor-alpha (TNF-alpha)-induced apoptosis. Glucosylceramide synthase (GCS) catalyzes glycosylation of ceramide and produces glucosylceramide. By introduction of the GCS gene, cytotoxic resistance to TNF-alpha has been conferred in human breast cancer cells. MCF-7/GCS-transfected cells expressed 4.1-fold higher levels of GCS activity and exhibited a 15-fold (P < 0.0005) greater EC(50) for TNF-alpha, compared with the parental MCF-7 cell line. DNA fragmentation and DNA synthesis studies showed that TNF-alpha had little influence on the induction of apoptosis or on growth arrest in MCF-7/GCS cells, compared to MCF-7 cells. These studies reveal that TNF-alpha resistance in MCF-7/GCS cells is closely related to ceramide hyperglycosylation, a hallmark of this transfected cell line, and resistance was not aligned with changes in TNF receptor 1 expression. This work demonstrates that GCS, which catalyzes ceramide glycosylation, potentiates cytotoxic resistance to TNF-alpha.

Copyright 1999 Academic Press.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk