Display Settings:


Send to:

Choose Destination
Optom Vis Sci. 1999 Oct;76(10):712-9.

Re-evaluation of the oxygen diffusion model for predicting minimum contact lens Dk/t values needed to avoid corneal anoxia.

Author information

  • 1The Vision Science Group and the Morton D. Sarver Center for Cornea and Contact Lens Research, School of Optometry, University of California, Berkeley 94720, USA. danharvitt@yahoo.com



(1) To update Fatt's mathematical model of the distribution of oxygen tension (pO2) across the cornea and contact lens (CL) to include the recent finding that corneal oxygen consumption increases with the acidification that occurs with CL wear. (2) To estimate the minimum transmissibility (CL Dk/t) to avoid epithelial anoxia or to avoid stromal anoxia.


A five-layer static and one-dimensional mathematical model of oxygen diffusion through the cornea based on Fatt's models was used. The relationships between acidosis and increased QO2, and acidosis and CL Dk/t were used to estimate corneal QO2 for a given CL Dk/t.


(1) Revised model predictions are in agreement with direct tear pO2 measurements beneath CLs in the rabbit. (2) For the human eye, the minimum CL Dk/t for oxygen delivery to the basal epithelial cells was determined to be 23 for the open eye and 89 for the closed eye. To prevent anoxia throughout the entire corneal thickness the Dk/t requirements are 35 for the open eye and 125 for the closed eye.


(1) Model predictions of the oxygen distribution beneath contact lenses are significantly lower than previous models that did not include the effect of acidosis on corneal QO2. (2) Minimum Dk/t values that allow oxygen delivery to the basal epithelium are in agreement with the Dk/t needed to avoid corneal edema.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk