Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Development. 1999 Nov;126(21):4839-48.

A novel WD40 protein, CHE-2, acts cell-autonomously in the formation of C. elegans sensory cilia.

Author information

  • 1Structural Biology Center, National Institute of Genetics, Mishima 411-8540, Japan and Department of Genetics, School of Life Science, Graduate University for Advanced Studies, Mishima 411-8540, Japan. ikatsura@lab.nig.ac.jp.

Abstract

To elucidate the mechanism of sensory cilium formation, we analyzed mutants in the Caenorhabditis elegans che-2 gene. These mutants have extremely short cilia with an abnormal posterior projection, and show defects in behaviors that are mediated by ciliated sensory neurons. The che-2 gene encodes a new member of the WD40 protein family, suggesting that it acts in protein-protein interaction. Analysis of mutation sites showed that both the amino-terminal WD40 repeats and the carboxyl-terminal non-WD40 domain are necessary for the CHE-2 function. CHE-2-tagged green fluorescent protein is localized at the cilia of almost all the ciliated sensory neurons. Expression of che-2 in a subset of sensory neurons of a che-2 mutant by using a heterologous promoter resulted in restoration of the functions and cilium morphology of only the che-2-expressing neurons. Thus, che-2 acts cell-autonomously. This technique can be used in the future for determining the function of each type of che-2-expressing sensory neuron. Using green fluorescent protein, we found that the extension of cilia in wild-type animals took place at the late embryonic stage, whereas the cilia of che-2 mutant animals remained always short during development. Hence, the abnormal posterior projection is due to the inability of cilia to extend, rather than degeneration of cilia once correctly formed. Expression of che-2 in a che-2 mutant under a heat shock promoter showed that the extension of cilia, surprisingly, can occur even at the adult stage, and that such cilia can function apparently normally in behavior.

PMID:
10518500
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for HighWire
    Write to the Help Desk