Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Microbiology. 1999 Sep;145 ( Pt 9):2293-301.

Evidence that a single EF-Ts suffices for the recycling of multiple and divergent EF-Tu species in Streptomyces coelicolor A3(2) and Streptomyces ramocissimus.

Author information

  • 1Department of Biochemistry, Leiden Institute of Chemistry, Leiden University, The Netherlands.

Abstract

The tsf genes from Streptomyces coelicolor A3(2) and Streptomyces ramocissimus, encoding the guanine-nucleotide exchange factor EF-Ts, were cloned and sequenced. Streptomycetes have multiple and highly divergent EF-Tu species, with EF-Tu1 and EF-Tu3 showing only about 65% amino acid sequence identity, and yet these can apparently interact with a single EF-Ts species. tsf lies in an operon with rpsB, which encodes ribosomal protein S2. The amino acid sequence of S2 from S. coelicolor differs from most other bacterial S2 homologues in having a C-terminal extension of 70 aa residues with a highly repetitive organization, the function of which is unknown. Transcription analysis of the rpsB-tsf operon of S. coelicolor by promoter probing, nuclease S1 mapping and Northern blotting revealed that the genes give rise to a bicistronic transcript from a single promoter upstream of rpsB. An attenuator was identified in the rpsB-tsf intergenic region; it results in an approximately 2:1 ratio of rpsB vs tsf transcripts. Although tuf1, encoding the major EF-Tu, is located in the rpsL ribosomal protein operon, an additional promoter in the fus-tuf1 intergenic region leads to a significant excess of EF-Tu over ribosomes. Most amino acid residues known from the Escherichia coli crystal structure of the EF-Tu-EF-Ts complex to be directly involved in interaction between the two elongation factors are conserved between E. coli and Streptomyces. However, whenever interaction residues in the EF-Tu moiety show divergence among Streptomyces EF-Tu1, EF-Tu2 and EF-Tu3, the single Streptomyces EF-Ts exhibits compensatory substitutions of the corresponding residues. These apparently enable productive interaction to occur with all three EF-Tus.

PMID:
10517582
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk