Display Settings:

Format

Send to:

Choose Destination
Nat Biotechnol. 1999 Oct;17(10):979-83.

Cyclic mechanical strain regulates the development of engineered smooth muscle tissue.

Author information

  • 1Department of Chemical Sciences, University of Michigan, Ann Arbor, MI 48109, USA.

Abstract

We show that the appropriate combinations of mechanical stimuli and polymeric scaffolds can enhance the mechanical properties of engineered tissues. The mechanical properties of tissues engineered from cells and polymer scaffolds are significantly lower than the native tissues they replace. We hypothesized that application of mechanical stimuli to engineered tissues would alter their mechanical properties. Smooth muscle tissue was engineered on two different polymeric scaffolds and subjected to cyclic mechanical strain. Short-term application of strain increased proliferation of smooth muscle cells (SMCs) and expression of collagen and elastin, but only when SMCs were adherent to specific scaffolds. Long-term application of cyclic strain upregulated elastin and collagen gene expression and led to increased organization in tissues. This resulted in more than an order of magnitude increase in the mechanical properties of the tissues.

PMID:
10504698
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Icon for Nature Publishing Group
    Loading ...
    Write to the Help Desk