Send to:

Choose Destination
See comment in PubMed Commons below
J Neurosci. 1999 Sep 15;19(18):8049-56.

The nondiscriminating zone of directionally selective retinal ganglion cells: comparison with dendritic structure and implications for mechanism.

Author information

  • 1Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, Massachusetts 02114, USA.


We have studied, at high resolution, the sizes and pattern of dendrites of directionally selective retinal ganglion cells in the rabbit. The dendrites had a distinctive pattern of branching. The major dendritic trunks were relatively thick, beginning at approximately 1 micrometer and tapering to approximately 0.5 micrometer in diameter. Higher order dendrites exiting from them generally stepped abruptly to a diameter of 0.4-0.6 micrometer, which they maintained throughout their length. Recording confirmed the existence of a zone within the receptive field, usually occupying 20-25% of its area, where direction of movement was only weakly discriminated. The dendritic arbors of cells, injected with Lucifer yellow after recording, revealed no difference in dendritic structure between the discriminating and nondiscriminating zones. The nondiscriminating zone was located on the preferred side of the receptive field (the side from which movement in the preferred direction originates). This is consistent with a mechanism of direction selectivity based on inhibition generated by movement in the null direction but not with feedforward excitation, as occurs in flies and is postulated in some models of mammalian direction selectivity.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk