Activation of the protein kinase ERK5/BMK1 by receptor tyrosine kinases. Identification and characterization of a signaling pathway to the nucleus

J Biol Chem. 1999 Sep 10;274(37):26563-71. doi: 10.1074/jbc.274.37.26563.

Abstract

ERK5 (also known as BMK1), a member of the mitogen-activated protein kinase (MAPK) superfamily, was known to be activated strongly by oxidant and osmotic stresses. Here we have found that ERK5 is strongly activated by epidermal growth factor and nerve growth factor, whose receptors are tyrosine kinases. The activation of ERK5 was inhibited by expression of dominant-negative Ras and induced by expression of active Ras in PC12 cells, indicating a requirement for Ras in ERK5 activation. The epidermal growth factor-induced activation of ERK5 was found to be inhibited by PD98059 and U0126 inhibitors, which were previously thought to act specifically on classical MAPK kinase (also known as MEK1) and readily reversed by CL100 and MKP-3 dual-specificity phosphatases for which classical MAPKs were previously shown to serve as preferred substrates. The reporter assays demonstrated that the serum-induced enhancement of transcription from serum response element was significantly inhibited by expression of a dominant-negative form of MEK5, which was a direct and specific activator for ERK5 and that transcription from serum response element mediated by the Ets-domain transcription factor Sap1a, but not by Elk1, was stimulated by coexpression of ERK5 and active MEK5. In addition, Sap1a was shown to be phosphorylated by ERK5 in vitro and by the activation of the ERK5 pathway in cells. Moreover, the serum-induced c-Fos expression was markedly inhibited by expression of dominant-negative MEK5. These results reveal a novel signaling pathway to the nucleus mediated by ERK5 that functions downstream of receptor tyrosine kinases to induce immediate early genes, in parallel with the classical MAPK cascade.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Animals
  • Base Sequence
  • Calcium-Calmodulin-Dependent Protein Kinases / antagonists & inhibitors
  • Calcium-Calmodulin-Dependent Protein Kinases / chemistry
  • Calcium-Calmodulin-Dependent Protein Kinases / genetics
  • Calcium-Calmodulin-Dependent Protein Kinases / metabolism*
  • Cell Membrane / metabolism
  • Cell Nucleus / enzymology
  • Cell Nucleus / metabolism*
  • Cloning, Molecular
  • DNA Primers
  • DNA, Complementary
  • Enzyme Activation
  • Enzyme Inhibitors / pharmacology
  • GTP Phosphohydrolases / metabolism
  • Humans
  • Mice
  • Mitogen-Activated Protein Kinase 7
  • Mitogen-Activated Protein Kinases*
  • Molecular Sequence Data
  • Receptor Protein-Tyrosine Kinases / antagonists & inhibitors
  • Receptor Protein-Tyrosine Kinases / metabolism*
  • Sequence Homology, Amino Acid
  • Signal Transduction*

Substances

  • DNA Primers
  • DNA, Complementary
  • Enzyme Inhibitors
  • Receptor Protein-Tyrosine Kinases
  • Calcium-Calmodulin-Dependent Protein Kinases
  • Mitogen-Activated Protein Kinase 7
  • Mitogen-Activated Protein Kinases
  • GTP Phosphohydrolases

Associated data

  • GENBANK/AB019373
  • GENBANK/AB019374