Format

Send to

Choose Destination
See comment in PubMed Commons below
Oncogene. 1999 Aug 12;18(32):4577-85.

Differential expression of the cyclin-dependent kinase inhibitor P27 in primary hepatocytes in early-mid G1 and G1/S transitions.

Author information

  • 1INSERM U370, Necker Institute, 156 rue de Vaugirard, 75015 Paris, France.

Abstract

P27, an inhibitor of cyclin-dependent kinases, plays an important role in the control of cell adhesion and contact inhibition-dependent cell cycle regulation. Hepatocytes, maintained in primary culture, offer a model of synchronized primary epithelial cells which retain a differentiated profile while stimulated to proliferate. We therefore investigated the pattern of endogenous p27 expression in cyclin rat hepatocytes isolated by collagenase perfusion followed by mitogenic stimulation. P27 was expressed in whole normal liver and freshly isolated hepatocytes. We then observed a sharp decrease in p27 levels, concomitant with the progression in early-mid G1, followed by reaccumulation in late G1 and the G1/S transition. Immunochemistry and BrdU labelling demonstrated nuclear localization of p27 and its expression in cells engaged in both G1 and S phase. P27 was detected in late G1 in complexes containing cyclins D1, E and A. Cyclin E- and A-associated kinase activities, however, were detected at the G1/S transition and depletion experiments confirmed that most active complexes were free of p27. Phosphorylated forms of p27 were detected in unstimulated and stimulated hepatocytes in both early-mid G1 and G1/S. Finally, two-dimensional gel electrophoresis showed evidence for several forms of p27 with a distinct profile of distribution in quiescent and stimulated hepatocytes. Collectively, our data offer a model in which p27 shows a biphasic profile of accumulation, with the early decrease possibly involved in the progression through early and mid G1. In contrast with most cell types tested so far, the late G1 accumulation did not impair formation of active cyclin E- and A associated kinases, and thus G1/S transition.

[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Write to the Help Desk