Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Magn Reson Med. 1999 Sep;42(3):490-9.

Effect of carbogen breathing on the physiological profile of human glioma xenografts.

Author information

  • 1Department of Radiology, University of Nijmegen, Nijmegen, The Netherlands. B.vanderSanden@Rdiag.AZN.NL

Abstract

The aim of this study was to evaluate the effect of carbogen breathing on the physiological profile of human glioma xenografts. Near infrared spectroscopy was used to investigate changes in oxy- and deoxyhemoglobin concentrations in tumor blood. Oxygen tension changes in tumor tissue were evaluated by (19)F-MR relaxometry, using perfluoro-15-crown-5-ether, and modifications of tumor blood perfusion (TBP) were analyzed by fast dynamic (1)H-MR imaging of Gd-DTPA uptake. Finally, changes of the bioenergetic status and pH of tumor cells were analyzed by (31)P-MRS. After 5 to 8 min of carbogen breathing, the average oxygen tension increase in tumor tissue was 4.6 +/- 1.3 mm Hg, which is in agreement with an increase of the oxyhemoglobin concentration in tumor blood (Delta[O(2)Hb] = 9. 2 +/- 3 microM). However, simultaneously the TBP was reduced, the bioenergetic status was diminished, and pH was decreased. As 100% O(2) breathing alone did not result in a detectable increase of oxyhemoglobin in tumor blood, the increase of the tumor oxygenation by carbogen appears to be mediated by its CO(2) content. This component may cause a nutrient-limited decrease of oxidative energy metabolism, indirectly via a steal-effect and/or by inhibition of the glycolytic rate resulting from tissue acidification. Magn Reson Med 42:490-499, 1999.

Copyright 1999 Wiley-Liss, Inc.

PMID:
10467293
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for John Wiley & Sons, Inc.
    Loading ...
    Write to the Help Desk