Format

Send to:

Choose Destination
See comment in PubMed Commons below
Int J Dev Neurosci. 1999 Jun;17(3):163-72.

Ca2+ mobilization and capacitative Ca2+ entry regulate DNA synthesis in cultured chick retinal neuroepithelial cells.

Author information

  • 1Institute of Anatomy I, University of Freiburg, Germany.

Abstract

Release of Ca2+ from intracellular Ca2+ stores (Ca2+ mobilization) and capacitative Ca2+ entry have been shown to be inducible in neuroepithelial cells of the early embryonic chick retina. Both types of Ca2+ responses decline parallel with retinal progenitor cell proliferation. To investigate their potential role in the regulation of neuroepithelial cell proliferation, we studied the effects of 2,5-di-tert-butylhydroquinone (DBHQ), an inhibitor of the Ca2+ pump of intracellular Ca2+ stores, and of SK&F 96365, an inhibitor of capacitative Ca2+ entry, on DNA synthesis in retinal organ cultures from embryonic day 3 (E3) chicks and in dissociated cultures from E7 and E9 chick retinae. We demonstrate that both antagonists inhibit [3H]-thymidine incorporation in a dose-dependent manner without affecting cell viability or morphology. The inhibition of [3H]-thymidine incorporation by SK&F 96365 occurred in the same concentration range (IC50: approximately 4 microM) as the blockade of capacitative Ca2+ entry in the E3 retinal organ culture. At a concentration of 5 microM SK&F 96365. DNA synthesis was reduced by 71, 40 and 32% in the E3, E7 and E9 cultures, respectively. Application of DBHQ at concentrations which led to depletion of intracellular Ca2+ stores also inhibited [3H]-thymidine incorporation with IC50 values of 20-30 microM in the different cultures. Our results suggest the involvement of Ca2+ mobilization and capacitative Ca2+ entry in the regulation of DNA synthesis in the developing neural retina.

PMID:
10452360
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk