Display Settings:

Format

Send to:

Choose Destination
J Biol Chem. 1999 Aug 20;274(34):24270-9.

Cell cycle-dependent switch of up-and down-regulation of human hsp70 gene expression by interaction between c-Myc and CBF/NF-Y.

Author information

  • 1Graduate School of Pharmaceutical Sciences, Hokkaido University, Kita-ku, Sapporo 060, Japan.

Abstract

A CCAAT box-binding protein subunit, CBF-C/NF-YC, was cloned as a protein involved in the c-Myc complex formed on the G(1)-specific enhancer in the human hsp70 gene. CBF-C/NF-YC directly bound to c-Myc in vitro and in vivo in cultured cells. The CBF/NF-Y.c-Myc complex required the HSP-MYC-B element as well as CCAAT in the hsp70 G(1)-enhancer, while the purified CBF subunits recognized only CCAAT even in the presence of c-Myc. Both the HSP-MYC-B and CCAAT elements were also required for the enhancer activity. In transient transfection experiments, the CBF/NF-Y.c-Myc complex, as well as transcription due to the G(1)-enhancer, was increased by the introduction of c-Myc at low doses but decreased at high doses. The repression of both complex formation and transcription by c-Myc at high doses was abrogated by the introduction of CBF/NF-Y in a dose-dependent manner. Furthermore, the CBF/NF-Y.c-Myc complex bound to the G(1)-enhancer appeared in the early G(1) phase of the cell cycle when c-Myc was not higly expressed and gradually disappeared after the c-Myc expression reached its maximum. The results indicate that the cell cycle-dependent expression of the hsp70 gene is regulated by the intracellular amount of c-Myc through the complex formation states between CBF/NF-Y and c-Myc.

PMID:
10446203
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk