Display Settings:

Format

Send to:

Choose Destination
J Biol Chem. 1999 Aug 13;274(33):23468-79.

Genetic instabilities in (CTG.CAG) repeats occur by recombination.

Author information

  • 1Institute of Biosciences and Technology, Center for Genome Research, Texas A&M University, Texas Medical Center, Houston, Texas 77030, USA.

Abstract

The expansion of triplet repeat sequences (TRS) associated with hereditary neurological diseases is believed from prior studies to be due to DNA replication. This report demonstrates that the expansion of (CTG.CAG)(n) in vivo also occurs by homologous recombination as shown by biochemical and genetic studies. A two-plasmid recombination system was established in Escherichia coli with derivatives of pUC19 (harboring the ampicillin resistance gene) and pACYC184 (harboring the tetracycline resistance gene). The derivatives contained various triplet repeat inserts ((CTG.CAG), (CGG.CCG), (GAA.TTC), (GTC.GAC), and (GTG.CAC)) of different lengths, orientations, and extents of interruptions and a control non-repetitive sequence. The availability of the two drug resistance genes and of several unique restriction sites on the plasmids enabled rigorous genetic and biochemical analyses. The requirements for recombination at the TRS include repeat lengths >30, the presence of CTG.CAG on both plasmids, and recA and recBC. Sequence analyses on a number of DNA products isolated from individual colonies directly demonstrated the crossing-over and expansion of the homologous CTG.CAG regions. Furthermore, inversion products of the type [(CTG)(13)(CAG)(67)].[(CTG)(67)(CAG)(13)] were isolated as the apparent result of "illegitimate" recombination events on intrahelical pseudoknots. This work establishes the relationships between CTG.CAG sequences, multiple fold expansions, genetic recombination, formation of new recombinant DNA products, and the presence of both drug resistance genes. Thus, if these reactions occur in humans, unequal crossing-over or gene conversion may also contribute to the expansions responsible for anticipation associated with several hereditary neurological syndromes.

PMID:
10438526
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk