Format

Send to:

Choose Destination
See comment in PubMed Commons below
Biochemistry. 1999 Aug 3;38(31):10196-204.

The role of Arg46 and Arg47 of antithrombin in heparin binding.

Author information

  • 1Department of Veterinary Medical Chemistry, Swedish University of Agricultural Sciences, Uppsala Biomedical Center.

Abstract

Heparin greatly accelerates the reaction between antithrombin and its target proteinases, thrombin and factor Xa, by virtue of a specific pentasaccharide sequence of heparin binding to antithrombin. The binding occurs in two steps, an initial weak interaction inducing a conformational change of antithrombin that increases the affinity for heparin and activates the inhibitor. Arg46 and Arg47 of antithrombin have been implicated in heparin binding by studies of natural and recombinant variants and by the crystal structure of a pentasaccharide-antithrombin complex. We have mutated these two residues to Ala or His to determine their role in the heparin-binding mechanism. The dissociation constants for the binding of both full-length heparin and pentasaccharide to the R46A and R47H variants were increased 3-4-fold and 20-30-fold, respectively, at pH 7.4. Arg46 thus contributes only little to the binding, whereas Arg47 is of appreciable importance. The ionic strength dependence of the dissociation constant for pentasaccharide binding to the R47H variant showed that the decrease in affinity was due to the loss of both one charge interaction and nonionic interactions. Rapid-kinetics studies further revealed that the affinity loss was caused by both a somewhat lower forward rate constant and a greater reverse rate constant of the conformational change step, while the affinity of the initial binding step was unaffected. Arg47 is thus not involved in the initial weak binding of heparin to antithrombin but is important for the heparin-induced conformational change. These results are in agreement with a previously proposed model, in which an initial low-affinity binding of the nonreducing-end trisaccharide of the heparin pentasaccharide induces the antithrombin conformational change. This change positions Arg47 and other residues for optimal interaction with the reducing-end disaccharide, thereby locking the inhibitor in the activated state.

PMID:
10433728
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Write to the Help Desk