Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Mol Cell Endocrinol. 1999 May 25;151(1-2):103-19.

Local activation and inactivation of thyroid hormones: the deiodinase family.

Author information

  • Abteilung für Molekulare Innere Medizin und Klinische Forschergruppe der Medizinischen Poliklinik der Universität Würzburg, Germany. j.koehrle@mail.uni-wuerzburg.de

Abstract

Tissue-specific activation and inactivation of ligands of nuclear receptors which belong to the steroid retinoid-thyroid hormone superfamily of transcription factors represents an important principle of development- and tissue-specific local modulation of hormone action. Recently, several enzyme families have been identified which act as 'guardians of the gate' of ligand-activated transcription modulation. Three monodeiodinase isoenzymes which are involved in activation the 'prohormone' L-thyroxine (T4), the main secretory product of the thyroid gland, have been identified, characterized, and cloned. Both, type I and type II 5'-deiodinase generate the thyromimetically active hormone 3,3',5-triiodothyronine (T3) by reductive deiodination of the phenolic ring of T4. Inactivation of T4 and its product T3 occurs by deiodination of iodothyronines at the tyrosyl ring. This reaction is catalyzed both the type III 5-deiodinase and also by the type I enzyme, which has a broader substrate specificity. The three deiodinases appear to constitute a newly discovered family of selenocysteine-containing proteins and the presence of selenocysteine in the protein is critical for enzyme activity. Whereas the selenoenzyme characteristics of the type I and type III deiodinases are definitively established some controversy still exists for the type II 5'-deiodinase in mammals. The mRNA probably encoding the type II 5'-deiodinase subunit is markedly longer than those of the two other deiodinases and its selenocysteine-insertion element is located more than 5 kB downstream of the UGA-codon in the 3'-untranslated region. The three deiodinase isoenzymes show a distinct development- and tissue-specific pattern of expression, operate at individual optimal substrate levels, are differently regulated and modulated by hormones, cytokines, signaling pathways, natural factors, and pharmaceuticals. Whereas circulating T3 mainly originates from hepatic production via the type I 5'-deiodinase, the local cellular thyroid hormone concentration in various tissues including the central nervous system is controlled by complex para-, auto-, and intracrine interactions of all three deiodinases. Local thyroid hormone availability is further modulated by conjugation reactions of the phenolic 4'-OH-group of iodothyronines, which also inactivate the thyroid hormones.

PMID:
10411325
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Write to the Help Desk