Display Settings:

Format

Send to:

Choose Destination
We are sorry, but NCBI web applications do not support your browser and may not function properly. More information
J Cell Biol. 1999 Jun 14;145(6):1325-40.

alpha-Dystroglycan is a laminin receptor involved in extracellular matrix assembly on myotubes and muscle cell viability.

Author information

  • 1Center for Research in Neuroscience, McGill University, Montreal General Hospital Research Institute, Montreal, Quebec H3G 1A4, Canada.

Abstract

alpha-Dystroglycan (alpha-DG) is a laminin-binding protein and member of a glycoprotein complex associated with dystrophin that has been implicated in the etiology of several muscular dystrophies. To study the function of DG, C2 myoblasts were transfected stably with an antisense DG expression construct. Myotubes from two resulting clones (11F and 11E) had at least a 40-50% and 80-90% reduction, respectively, in alpha-DG but normal or near normal levels of alpha-sarcoglycan, integrin beta1 subunit, acetylcholine receptors (AChRs), and muscle-specific kinase (MuSK) when compared with parental C2 cells or three clones (11A, 9B, and 10C) which went through the same transfection and selection procedures but expressed normal levels of alpha-DG. Antisense DG-expressing myoblasts proliferate at the same rate as parental C2 cells and differentiate into myotubes, however, a gradual loss of cells was observed in these cultures. This loss correlates with increased apoptosis as indicated by greater numbers of nuclei with condensed chromatin and more nuclei labeled by the TUNEL method. Moreover, there was no sign of increased membrane permeability to Trypan blue as would be expected with necrosis. Unlike parental C2 myotubes, 11F and 11E myotubes had very little laminin (LN) on their surfaces; LN instead tended to accumulate on the substratum between myotubes. Exogenous LN bound to C2 myotubes and was redistributed into plaques along with alpha-DG on their surfaces but far fewer LN/alpha-DG plaques were seen after LN addition to 11F or 11E myotubes. These results suggest that alpha-DG is a functional LN receptor in situ which is required for deposition of LN on the cell and, further, implicate alpha-DG in the maintenance of myotube viability.

PMID:
10366602
[PubMed - indexed for MEDLINE]
PMCID:
PMC2133146
Free PMC Article

Images from this publication.See all images (9)Free text

Figure 1
Figure 4
Figure 5
Figure 2
Figure 3
Figure 6
Figure 7
Figure 8
Figure 9
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk