Display Settings:

Format

Send to:

Choose Destination
See comment in PubMed Commons below
Plant Physiol. 1999 Jun;120(2):433-42.

Characterization of photosystem II activity and heterogeneity during the cell cycle of the green alga scenedesmus quadricauda

Author information

  • 1NRC Photosynthesis and Global Climate Change, Institute of Microbiology, Opatovicky mlyn, CZ-37981 Trebon, Czech Republic (D.K., L.N.).

Abstract

The photosynthetic activity of the green alga Scenedesmus quadricauda was investigated during synchronous growth in light/dark cycles. The rate of O2 evolution increased 2-fold during the first 3 to 4 h of the light period, remained high for the next 3 to 4 h, and then declined during the last half of the light period. During cell division, which occurred at the beginning of the dark period, the ability of the cells to evolve O2 was at a minimum. To determine if photosystem II (PSII) controls the photosynthetic capacity of the cells during the cell cycle we measured PSII activity and heterogeneity. Measurements of electron-transport activity revealed two populations of PSII, active centers that contribute to carbon reduction and inactive centers that do not. Measurements of PSII antenna sizes also revealed two populations, PSIIalpha and PSIIbeta, which differ from one another by their antenna size. During the early light period the photosynthetic capacity of the cells doubled, the O2-evolving capacity of PSII was nearly constant, the proportion of PSIIbeta centers decreased to nearly zero, and the proportion of inactive PSII centers remained constant. During the period of minimum photosynthetic activity 30% of the PSII centers were insensitive to the inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea, which may be related to reorganization of the thylakoid membrane. We conclude from these results that PSII does not limit the photosynthetic activity of the cells during the first half of the light period. However, the decline in photosynthetic activity observed during the last half of the light period can be accounted for by limited PSII activity.

PMID:
10364394
[PubMed - as supplied by publisher]
PMCID:
PMC59281
Free PMC Article

Images from this publication.See all images (8)Free text

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk