Format

Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 1999 Jun 11;274(24):17139-43.

DNA-dependent protein kinase-independent activation of p53 in response to DNA damage.

Author information

  • 1Life Sciences Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.

Abstract

Phosphorylation at serine 15 of the human p53 tumor suppressor protein is induced by DNA damage and correlates with accumulation of p53 and its activation as a transcription factor. The DNA-dependent protein kinase (DNA-PK) can phosphorylate serine 15 of human p53 and the homologous serine 18 of murine p53 in vitro. Contradictory reports exist about the requirement for DNA-PK in vivo for p53 activation and cell cycle arrest in response to ionizing radiation. While primary SCID (severe combined immunodeficiency) cells, that have defective DNA-PK, show normal p53 activation and cell cycle arrest, a transcriptionally inert form of p53 is induced in the SCID cell line SCGR11. In order to unambiguously define the role of the DNA-PK catalytic subunit (DNA-PKcs) in p53 activation, we examined p53 phosphorylation in mouse embryonic fibroblasts (MEFs) from DNA-PKcs-null mice. We found a similar pattern of serine 18 phosphorylation and accumulation of p53 in response to irradiation in both control and DNA-PKcs-null MEFs. The induced p53 was capable of sequence-specific DNA binding even in the absence of DNA-PKcs. Transactivation of the cyclin-dependent-kinase inhibitor p21, a downstream target of p53, and the G1 cell cycle checkpoint were also found to be normal in the DNA-PKcs -/- MEFs. Our results demonstrate that DNA-PKcs, unlike the related ATM protein, is not essential for the activation of p53 and G1 cell cycle arrest in response to ionizing radiation.

PMID:
10358069
[PubMed - indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Write to the Help Desk