Send to:

Choose Destination
See comment in PubMed Commons below
Hum Gene Ther. 1999 May 1;10(7):1163-73.

High-efficiency transduction and long-term gene expression with a murine stem cell retroviral vector encoding the green fluorescent protein in human marrow stromal cells.

Author information

  • 1Division of Experimental Hematology and the Transplantation and Gene Therapy Program, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.


Bone marrow stromal cells (MSCs) are unique mesenchymal cells that have been utilized as vehicles for the delivery of therapeutic proteins in gene therapy protocols. However, there are several unresolved issues regarding their potential therapeutic applications. These include low transduction efficiency, attenuation of transgene expression, and the technical problems associated with drug-based selection markers. To address these issues, we have developed a transduction protocol that yields high-level gene transfer into human MSCs, employing a murine stem cell virus-based bicistronic vector containing the green fluorescent protein (GFP) gene as a selectable marker. Transduction of MSCs plated at low density for 6 hr per day for 3 days with high-titer viral supernatant resulted in a gene transfer efficiency of 80+/-6% (n = 10) as measured by GFP fluorescence. Neither centrifugation nor phosphate depletion increased transduction efficiency. Assessment of amphotropic receptor (Pit-2) expression by RT-PCR demonstrated that all MSCs expressing the receptor were successfully transduced. Cell cycle distribution profiles measured by propidium iodide staining showed no correlation with the susceptibility of MSCs to transduction by the retroviral vector. Human MSCs sequentially transduced with an adenoviral vector encoding the ecotropic receptor and ecotropic retroviral vector encoding GFP demonstrated that all MSCs are susceptible to retroviral transduction. We further showed that both genes of bicistronic vector are expressed for at least 6 months in vitro and that transgene expression did not affect the growth or osteogenic differentiation potential of MSCs. Future studies will be directed toward the development of gene therapy protocols employing this strategy.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Mary Ann Liebert, Inc.
    Loading ...
    Write to the Help Desk