Properties of C1 and other ventrolateral medullary neurones with hypothalamic projections in the rat

J Physiol. 1999 Jun 1;517 ( Pt 2)(Pt 2):477-94. doi: 10.1111/j.1469-7793.1999.0477t.x.

Abstract

1. This study compared (i) the properties of C1 cells with those of neighbouring non-C1 neurones that project to the hypothalamus and (ii) the properties of C1 cells that project to the hypothalamus with those of their medullospinal counterparts. 2. Extracellular recordings were made at three rostrocaudal levels of the ventrolateral medulla (VLM) in alpha-chloralose-anaesthetized, artificially ventilated, paralysed rats. Recorded cells were filled with biotinamide. 3. Level I (0-300 microm behind facial nucleus) contained spontaneously active neurones that were silenced by baro- and cardiopulmonary receptor activation and virtually unaffected by nociceptive stimulation (firing rate altered by < 20 %). These projected either to the cord (type I; 36/39), or to the hypothalamus (type II; 2/39) but rarely to both (1/39). 4. Level II (600-800 microm behind facial nucleus) contained (i) type I neurones (n = 3) (ii) type II neurones (n = 11), (iii) neurones that projected to the hypothalamus and were silenced by baro- and cardiopulmonary receptor activation but activated by strong nociceptive stimulation (type III, n = 2), (iv) non-barosensitive cells activated by weak nociceptive stimulation which projected only to the hypothalamus (type IV, n = 9), (v) cells that projected to the hypothalamus and responded to none of the applied stimuli (type V, n = 7) and (vi) neurones activated by elevating blood pressure which projected neither to the cord nor to the hypothalamus (type VI, n = 4). 5. Level III (1400-1600 microm behind facial motor nucleus) contained all the cell types found at level II except type I. 6. Most of type I and II (17/26) and half of type III cells (4/8) were C1 neurones. Type IV-V were rarely adrenergic (2/12) and type VI were never adrenergic (0/3). 7. All VLM baroinhibited cells project either to the cord or the hypothalamus and virtually all (21/23) C1 cells receive inhibitory inputs from arterial and cardiopulmonary receptors.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Blood Pressure / physiology
  • Electrophysiology
  • Hypothalamus / physiology*
  • Male
  • Medulla Oblongata / cytology
  • Medulla Oblongata / metabolism
  • Medulla Oblongata / physiology*
  • Neurons / metabolism
  • Neurons / physiology*
  • Phenotype
  • Phenylethanolamine N-Methyltransferase / metabolism
  • Rats
  • Rats, Sprague-Dawley
  • Synaptic Transmission / physiology*

Substances

  • Phenylethanolamine N-Methyltransferase