Format

Send to

Choose Destination
See comment in PubMed Commons below
Mol Cell Biochem. 1999 Mar;193(1-2):115-8.

The CD38-cyclic ADP-ribose signaling system in insulin secretion.

Author information

  • 1Department of Biochemistry, Tohoku University School of Medicine, Sendai, Miyagi, Japan.

Abstract

Glucose induces an increase in the intracellular Ca2+ concentration in pancreatic beta-cells to secrete insulin. CD38 occurs in beta-cells and has both ADP-ribosyl cyclase, which catalyzes the formation of cyclic ADP-ribose (cADPR) from NAD+, and cADPR hydrolase, which converts cADPR to ADP-ribose. ATP, produced by glucose metabolism, competes with cADPR for the binding site, Lys-129, of CD38, resulting in the inhibition of the hydrolysis of cADPR and thereby causing cADPR accumulation in beta-cells. Cyclic ADP-ribose then binds to FK506-binding protein 12.6 in the ryanodine receptor Ca2+ channel (RyR), dissociating the binding protein from RyR to induce the release of Ca2+ from the endoplasmic reticulum. Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) phosphorylates RyR to sensitize and activate the Ca2+ channel. Ca2+, released from the RyR, further activates CaM kinase II and amplifies the process. Thus, cADPR acts as a second messenger for Ca2+ mobilization to secrete insulin. The novel mechanism of insulin secretion described above is different from the conventional hypothesis in which Ca2+ influx from extracellular sources plays a role in insulin secretion by glucose.

PMID:
10331647
[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Loading ...
    Write to the Help Desk