Format

Send to:

Choose Destination
See comment in PubMed Commons below
Proc Natl Acad Sci U S A. 1999 Apr 27;96(9):5322-7.

Regulatory interaction of PRL1 WD protein with Arabidopsis SNF1-like protein kinases.

Author information

  • 1Max-Planck Institut für Züchtungsforschung, D-50829 Cologne, Germany.

Abstract

Mutation of the PRL1 gene, encoding a regulatory WD protein, results in glucose hypersensitivity and derepression of glucose-regulated genes in Arabidopsis. The yeast SNF1 protein kinase, a key regulator of glucose signaling, and Arabidopsis SNF1 homologs AKIN10 and AKIN11, which can complement the Deltasnf1 mutation, were found to interact with an N-terminal domain of the PRL1 protein in the two-hybrid system and in vitro. AKIN10 and AKIN11 suppress the yeast Deltasnf4 mutation and interact with the SNF4p-activating subunit of SNF1. PRL1 and SNF4 bind independently to adjacent C-terminal domains of AKIN10 and AKIN11, and these protein interactions are negatively regulated by glucose in yeast. AKIN10 and AKIN11, purified in fusion with glutathione S-transferase, undergo autophosphorylation and phosphorylate a peptide of sucrose phosphate synthase in vitro. The sucrose phosphate synthase-peptide kinase activity of AKIN complexes detected by immunoprecipitation is stimulated by sucrose in light-grown Arabidopsis plants. In comparison with wild type, the activation level of AKIN immunocomplexes is higher in the prl1 mutant, suggesting that PRL1 is a negative regulator of Arabidopsis SNF1 homologs. This conclusion is supported by the observation that PRL1 is an inhibitor of AKIN10 and AKIN11 in vitro.

PMID:
10220464
[PubMed - indexed for MEDLINE]
PMCID:
PMC21862
Free PMC Article
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire Icon for PubMed Central
    Loading ...
    Write to the Help Desk